
Task 1: Fraud (fraud)

Authored and prepared by: Ho Xu Yang, Damian

Subtask 1

Limits: Bi = 0

Since Bi = 0, Si is equal to Ai ⇥X .

Hence Si > Sj () Ai ⇥X > Aj ⇥X () Ai > Aj (since X > 0).

As it suffices to ensure Si > Si+1 (by the transitive property of inequalities), the answer is YES
if and only if Ai > Ai+1 for all 1  i < N .

Time Complexity: O(N)

Subtask 2

Limits: N = 2

We observe that S1 > S2 () (A1 � A2)⇥X + (B1 � B2)⇥ Y > 0.

The answer is YES if and only if at least one of (A1 � A2) and (B1 � B2) is positive.

Time Complexity: O(1)

Subtask 3

Limits: 2  N  104

From our observations in subtasks 1 and 2, if there exists 1  i < N such that Ai  Ai+1 and
Bi  Bi+1, the answer is NO.

Furthermore, if Ai � Ai+1 and Bi > Bi+1 (or vice versa), then Si is trivially greater than Si+1.

Hence, let us only consider the remaining case where Ai > Ai+1 and Bi < Bi+1 (or vice versa).

We note that Si > Si+1 () (Bi � Bi+1)⇥ Y > (Ai+1 � Ai)⇥X .

Now let m = Ai+1�Ai

Bi�Bi+1
.

Rearranging, we get either Y
X > m or Y

X < m, depending on the sign of (Bi � Bi+1).

The answer is YES if and only if the intersection of all the inequalities is non-empty. Equiva-
lently, we check that all pairs of inequalities have a non-empty intersection.

Time Complexity: O(N2)

NOI 2021 National Olympiad in Informatics—Singapore 1

Subtask 4

Limits: (No further constraints)

Let us now optimise the approach described in subtask 3.

Instead of checking every pair of inequalities, we simply record the largest m value of a “right-
wards” inequality mright and the smallest m value of a “leftwards” inequality mleft.

Then, the answer is YES if and only if mleft > mright.

Time Complexity: O(N)

NOI 2021 National Olympiad in Informatics—Singapore 2

Task 3: Password (password)

Authored and prepared by: Ng Yu Peng

Preliminaries

Note that if we change Ai, Pi to Ai � c, Pi � c taken mod K + 1, the answer stays the same.
Hence replace K with K + 1 and Ai with the remainder of Ai � Pi +K when divided by K,
then the problem becomes: given an array A of integers between 0 and K � 1, and the given
operation, what is the minimum number of operations needed to make everything a multiple of
K? We shall work with this formulation for this write-up.

Subtask 1

Limits: N = 3

For this subtask, if Ai = 0 treat it as Ai = K.

Note that if A2 is not the maximum among the three numbers, we can always solve the prob-
lem in K � min(A1, A2, A3) operations, and clearly this is the minimum possible number of
operations necessary. Otherwise if A2 is the maximum, we have two cases:

Case 1: K�A2 operations involve A2 In this case the optimal sequence of operations is to pick
the range (1, 3) K � A2 times and then pick (1, 1) A2 � A1 times and (3, 3) A2 � A3 times,
giving a total of K + A2 � A1 � A3 operations.

Case 2: More than K�A2 operations involve A2. Then at least 2K�A2 operations are needed
to make A2 a multiple of K. We pick the range (1, 3) K � A2 times and the resulting array
can be turned into multiples of K in K moves as we can treat it as A2 = 0, giving a total of
2K � A2 operations.

The answer is the minimum of the above cases.

Time Complexity: O(1)

Subtask 2

Limits: Ai  Ai+1 for all 1  i  N � 1 and Si = 0 for all 1  i  N

Let i be the smallest index such that Ai 6= 0. The problem can be solved in K�Ai moves using
the following algorithm: pick the range (i, N) until AN is divisible by K, then keep picking
(i, N � 1) until AN�1 is divisible by K, and so on until Ai, . . . , AN are all divisible by K. This
is also the minimum number of moves needed to make Ai a multiple of K as well, hence it must
be the minimum possible number of moves needed to make everything multiples of K. If no
such i exists then the answer is 0.

NOI 2021 National Olympiad in Informatics—Singapore 5

Time Complexity: O(N)

Subtask 3

Limits: K = 1

In our solution we will treat this as K = 2 as we replaced K with K +1. Notice that if we pick
two ranges that overlap, the overlapped portion gets increased by 1 twice, so under modulo 2
there is no change. Hence we can remove the overlapped portion in both ranges and the result
would still be the same. By repeating this process for any two overlapping ranges, clearly the
sum of lengths of ranges decreases with each removal and hence the process must terminate.

Therefore we may assume that all ranges picked do not overlap. Hence for every range picked
the numbers in the range must all be 1. Thus the minimum number of operations needed is the
number of blocks of consecutive 1s.

Time Complexity: O(N)

Subtask 4

Limits: N,K  80

Here we will try to make A1 to Ai multiples of K and try to extend the solution to make Ai+1

a multiple of K as well. Notice that any operation done on Ai can be extended to include Ai+1

as well, and any operation done on Ai+1 which does not involve Ai does not involve indices
less than i as well. This motivates the following dynamic programming state: let dp(i, j) be
the minimum number of operations needed to make the first i numbers multiples of K, where j
operations affect Ai. Then compute dp(i, j), we first check that Ai + j is a multiple of K, and
passing that we take the minimum of:

• dp(i� 1, l) for l � j, as we can pick j of the l operations on Ai�1 to extend to Ai.

• dp(i � 1, l) + j � l for l < j as we can extend all l operations on Ai�1 to Ai and use
another j � l operations to hit j operations on Ai.

Then the remaining problem is what the bound on j should be. Notice that if we use operations
only on single elements, each element can be made a multiple of K in at most K � 1 moves, so
the total number of moves needed is at most N(K � 1), thus it is never optimal to have more
than N(K � 1) operations on any Ai. Thus the dp state is O(N2

K) and transition is O(NK)
on values of j such that Ai + j is a multiple of K (of which there are O(N2) states) and O(1)
on values of j which do not satisfy that (as they are rejected immediately).

Time Complexity: O(N3
K)

NOI 2021 National Olympiad in Informatics—Singapore 6

Subtask 5

Limits: N  400

We can reduce the state to O(N2) by only considering values of j that make Ai + j a multiple
of K and ignoring all other values. In other words, let dp(i, j) be the minimum number of
operations needed to make the first i elements multiples of K and Kj + (K � Ai) operations
affect Ai. Then transition is O(N).

Time Complexity: O(N3)

Subtask 6

Limits: N  3000

For this subtask we need to speed up the transition. Clearly dp(i, j+1) � dp(i, j). Hence if we
pick l such that Kl+(K�Ai�1)  Kj+(K�Ai) and K(l+1)+(K�Ai�1) > Kj+(K�Ai),
then

dp(i, j) = min(dp(i, l) +K(j � l) + Ai�1 � Ai, dp(i, l + 1))

Hence the transition is now O(1) as we can find such l in O(1) easily.

Time Complexity: O(N2)

Subtask 7

Limits: No additional constraints

To solve the final subtask, we need to take an entirely different approach to the question. Con-
sider the difference array

B1 = A1 � 0, B2 = A2 � A1, . . . , BN = AN � AN�1, BN+1 = 0� AN

where all values are taken modulo K, so every element in this array is between 0 and K � 1
inclusive.

Notice that an operation chosen for indices i  j adds 1 to Bi and reduces Bj+1 by 1, and every
other Bl is unaffected. Thus each operation is equivalent to transforming Bi ! Bi + 1 and
Bj ! Bj � 1 for some i < j. Every Ai is a multiple of K if and only if every Bi = 0 mod K.

Note that the order of operations is inconsequential. Additionally, B1 + B2 + · · · + BN+1 = 0
(mod K) by summing it through.

We’ll prove a few properties to aid in our solution:

Property 1. In the optimal solution, each element only receives +1 operations or only -1 oper-
ations.

NOI 2021 National Olympiad in Informatics—Singapore 7

Proof. Suppose otherwise, then there is an element that has had both +1 and -1 operations done
on it, let it be Bj . This means among all the operations, there exist two operations one on i, j

where i < j and one on j, k where j < k. But these two operations together yield Ai ! Ai + 1
and Bk ! Bk � 1, so we might as well replace these two operations with one on i, k, giving us
a solution with fewer operations, contradiction.

In the optimal solution, let Ci be the total amount added to Bi (so Ci could be negative). Addi-
tionally let Si = C1 + C2 + · · ·+ Ci.

Property 2. SN+1 = 0.

Proof. As each operation gives one +1 and one -1, the result follows.

Property 3. For each m = 1, 2, . . . , N + 1, Sm � 0.

Proof. Every -1 to a Bj corresponds to a +1 to a Bi with i < j. Hence the number of -1s
contributing to C1, C2, . . . , Cm is at most the number of +1s contributing to C1, C2, . . . , Cm,
which proves the above result.

In fact, a simple greedy algorithm shows that any array C satisfying property 3 will have a valid
sequence of operations yielding those values of C. Specifically, pick the smallest index i with
Ci > 0, use Ci +1s on index i, and split the Ci -1s to j > i with Cj < 0, and after making the
changes Ci = 0 and changes to the Cj < 0 chosen, repeat this process until all elements in C

are equal to 0.

Also notice that the number of operations used is |C1|+|C2|+···+|CN+1|
2 . Hence the problem reduces

to finding an array C satisfying properties 2 and 3, as well as Bi + Ci = 0 mod K for all i, and
minimising the above value.

Property 4. 0  |Ci|  K � 1 for all i = 1, 2, . . . , N + 1.

Proof. Suppose that some Ci � K (the case where Ci  �K is similar). Pick the smallest
index j with Cj < 0. Replace Ci ! Ci �K,Cj ! Cj +K. Then Property 2 is still true.

If i < j, Property 3 is still true as C1, . . . , Cj�1 � 0 � S1, . . . , Sj�1 � 0 and Sj, . . . , SN+1 are
unchanged.

If i > j, note that Sj, Sj+1, . . . , Si�1 all do not decrease and Si, . . . , SN+1 are unchanged. so
Property 3 is still true.

Additionally |C1| + |C2| + · · · + |CN+1| decreases, so we use fewer operations, contradicting
the assumption that our sequence of moves is optimal.

Summarising what we have so far:

Property 1. In the optimal solution, each element only receives +1 operations or only -1 oper-
ations.

Property 2. SN+1 = 0.

Property 3. For each m = 1, 2, . . . , N + 1, Sm � 0.

Property 4. 0  |Ci|  K � 1 for all i = 1, 2, . . . , N + 1.

NOI 2021 National Olympiad in Informatics—Singapore 8

Remember that 0  Bi  K � 1. Hence from Property 4 we know Ci = K �Bi or Ci = �Bi.

Hence this motivates a rough idea for a greedy algorithm: we start with all Ci = K � Bi, and
we shall greedily choose indices i to do the change Ci = �Bi.

Note that originally C1+C2+ · · ·+CN+1 = KN�(B1+B2+ · · ·+BN+1) which is a multiple
of K. Additionally every time we change K �Bi ! �Bi the sum C1 + · · ·+ CN+1 decreases
by K.

Let C1+· · ·+CN+1 = KT originally, then since the final configuration has C1+· · ·+CN+1 = 0
we make S changes K � Bi ! �Bi.

Also notice that, changing K�Bi ! �Bi basically subtracts K from each of Si, Si+1, . . . SN+1.

Greedy Algorithm

We sort (Bi,�i), then iteratively, in the sorted order, check if we can change Ci = K � Bi to
Ci = �Bi without compromising Property 3. If possible we do the change. This can be checked
quite quickly with a range add update, range minimum query segment tree. Then compute the
value |C1|+|C2|+···+|CN+1|

2 at the end to get the answer.

Time Complexity: O(N logN)

Proof that the algorithm is optimal

We first show that the algorithm makes T changes, where C1 + · · · + CN+1 = KT originally
before any changes, as this would mean that in the final configuration C1 + · · ·+ CN+1 = 0 so
the algorithm yields a valid array C.

If more than T changes were made, C1 + · · · + CN+1 < 0, which won’t happen as the greedy
algorithm does not compromise Property 3.

Otherwise if fewer than T changes were made, suppose X changes were made. Then pick the
largest index i such that Ci = K � Bi.

This means for all j > i, Cj = �Bj . Changing K � Bi ! �Bi does not contradict Property
3, because for all l < i we still have Sl � 0 and for all l � i we have Sl � SN+1 � 0 as
X < T and Cm  0 for all m � l, which means that the algorithm has not terminated yet, a
contradiction.

Since both cases above are not possible, this means the algorithm makes exactly T changes.

Now consider a sequence of changes different from our greedy algorithm, and we will show
that it cannot be optimal.

Notice that changing K �Bi ! �Bi changes |C1|+ |C2|+ · · ·+ |CN+1| by 2Bi �K, so it is
better to change Ci with the smaller Bi as we want to minimise that sum.

Now let X1, X2, . . . , XT be the indices which were changed, sorted in order of changes in the

NOI 2021 National Olympiad in Informatics—Singapore 9

greedy algorithm. So BX1  BX2  . . .  BXT .

Now let Y1, Y2, . . . , YT be the indices which were changed, for some S changes which still end
with Property 3 being satisfied, such that BY1  . . . BYT . We will show that if BYi 6= BXi for
some i then we can modify the sequence of S changes that result in Y to decrease the total
number of operations |C1|+|C2|+···+|CN+1|

2 .

Consider the smallest index i such that BYi 6= BXi . So BX1 = BY1 , BX2 = BY2 , . . . , BXi�1 =
BYi�1 , BXi 6= BYi .

Note that for any i < j, if Ci was changed but not Cj , changing Cj instead of Ci would still
satisfy Property 3, as we add K to a larger suffix of the array S than we subtract K from. Hence
we may assume that X1 = Y1, . . . , Xi�1 = Yi�1, because for each Bj = k picked we may pick
the largest unpicked j with Bj = k.

If BYi < BXi , the greedy algorithm would have picked Yi instead of Xi, so we must have
BXi < BYi .

Hence we assume CXi was not changed in the sequence of changes giving the array Y . For that
sequence of changes, pick the smallest index j that is not among X1, X2, . . . , Xi. We change
CXi instead of Cj in the Y sequence. It suffices to show that the resulting array C still satisfies
Property 3.

If Xi > j, this is clear as we are subtracting K from a smaller suffix of the array S.

Else Xi < j then for all l < j, by the minimality of j and the fact that the greedy algorithm does
not compromise Property 3, Sl � 0, and for any l � j, Sl does not change when we change CXi

instead of Cj .

Thus Property 3 is still satisfied.

If BXi < BYi  Bj , BXi +K �Bj < Bj +K �BXi , this swap would decrease |C1|+ |C2|+
· · ·+ |CN+1|, giving a better solution.

Therefore, if BXi 6= BYi for some i then we have shown that the sequence of changes giving Y

is not optimal, completing the proof.

NOI 2021 National Olympiad in Informatics—Singapore 10

Task 4: Tiles (tiles)

Authored and prepared by: Leong Eu-Shaun

Subtask 1

Limits: 1  N,Q  8

For each query, run a brute force algorithm. One possible solution is to scan the grid from left
to right, starting at the top row and ending at the bottom. If a square is black or has already been
tiled, skip it. Otherwise, try one of 3 possibilities: leaving it blank, placing a tile across it and
the square to its right, or placing a tile across it and the square below it. Once the end of the
grid is reached, increment the answer by 1.

Time complexity: O(answer)

Subtask 2

Limits: There will never be any black squares.

The answer to a range query depends only on the length of the range. Use a dynamic program-
ming solution that keeps track of the ”profile” at each column. Suppose a pattern covering n

columns has some tiles that jut out into column n + 1. Let the profile of column n + 1 be
represented by the bitmask b where a tiled square is recorded as a 1 and an untiled square is a 0.
For example, if the first and second squares in column n+ 1 are untiled while the third is tiled,
then b = 1002 = 4, since the third column corresponds to the hundreds digit in binary.

Let dp[n][b] be the number of ways to tile the first n columns with a profile of b jutting out into
column n + 1. To calculate dp[n][b], iterate over all profiles b0 of the previous column. Run a
simple brute force to find out how many arrangements of tiles can be placed in column n that
produce profile b in column n+ 1 while avoiding profile b

0 and the black squares in column n.

Time complexity: O(N) with high constant time

Subtask 3

Limits: 1  N,Q  7000

An inefficient implementation of the previous solution will now fail, because a linear runtime
for each query will result in a O(NQ) solution with high constant time. In particular, if for each
possible profile of a column, you try all 8 profiles of the previous column and use brute force
to count the number of ways tiles can be laid across both columns, your solution is likely to be
too slow to pass.

NOI 2021 National Olympiad in Informatics—Singapore 11

Instead, you can precompute the number of ways to tile 2 columns with profiles b and b
0. This

can be stored as a series of weights in a recurrence relation expressing dp[n][b] in terms of a
sum of dp[n� 1][b0] for some profiles b0.

By precomputing the weights, most efficient solutions should be able to pass this subtask.

Time complexity: O(NQ)

Subtask 4

Limits: 1  N,Q  30000

We need a data structure to accommodate point updates and range queries. For this, a segment
tree will suffice. For each node covering columns s to e, store an 8-by-8 array dp[a][b] which
counts the number of ways of tiling the range [s, e] while satisfying constraints imposed by a

and b. Bitmask a represents the squares in column s already covered by tiles that jut out from
column s� 1, while bitmask b represents the tiles from column e jutting out into column e+ 1.

Now, we must combine two nodes [s,m] and [m+1, e] with 8-by-8 arrays L and R respectively
into a parent node [s, e] with array P . To calculate P [a][b], iterate over all possible bitmasks i.
i represents the tiles that jut out from column m in the left node into column m+ 1. For each i,
add L[a][i] ·R[i][b] to P [a][b]. This takes 83 operations.

To calculate the answer to a range query, simply determine the array dp[a][b] for the range using
the combining operation described above, and output dp[0][0].

Time complexity: O((N +Q) logN)

NOI 2021 National Olympiad in Informatics—Singapore 12

Task 5: Pond (Pond)

Authored and prepared by: Jeffrey Lee

Introduction

For ease of reading, let us say that the linear pond stretches from left to right, with point 1
being the leftmost point of the pond and point N being the rightmost point. We will denote the
distance to the right from point 1 of each point i as si, i.e. si =

Pi�1
n=1 Di.

Subtask 1

Limits: N  100

We introduce a total cost T as the total number of algal strands eaten or remaining in the pond,
given the route taken so far. In other words, T is defined as follows:

T =
NX

n=1

(
time n was first visited, if n has been visited
time elapsed since start of swim, if n has not been visited

Note that T starts equal to 0, strictly increases as we travel around the pond, and ends equal to
the total number of algal strands eaten (once we have visited all points). In particular, whenever
we swim a distance D while there are u unvisited points, T increases by D · u.

We also introduce the O(N3) states (l, i, r), each representing that we are currently at point i,
and have visited the points left of K up to l as well as those right of K up to r. The initial state
is hence (K,K,K), while the valid end states are (1, i, N) for all 1  i  N . We can proceed
from every state (l, i, r) to the next by moving one point to the left or one point to the right into
the two successors (min (l, i� 1), i� 1, r) and (l, i+ 1,max (r, i+ 1)) respectively.

With this set of states and total cost T , we can perform Dijkstra’s Algorithm on the states to find
the minimum T required to form a complete route, making use of the following unidirectional
edges:

(l, i, r) �!
(
(min (l, i� 1), i� 1, r) , T += Di�1 · (N � r + l � 1)

(l, i+ 1,max (r, i+ 1)) , T += Di · (N � r + l � 1)

Time complexity: O(N3 logN)

Subtask 2

Limits: N  2000

NOI 2021 National Olympiad in Informatics—Singapore 13

Notice that if we choose at some state (l, i, r) to proceed left or right to a point (vertex) which
has already been visited, it would not be optimal to turn back before a new vertex has been
visited in that respective direction at state (l � 1, l � 1, r) or (l, r + 1, r + 1) - as turning back
would imply visiting a state for a second time with increased T .

As a consequence, we can extract the states of the form (l, l, r) or (l, r, r), in which a new vertex
is being visited, and construct direct edges between those states while pruning away all others.
The new recurrences would then be:

(l, l, r) �!
(
(l � 1, l � 1, r), T += Di�1 · (N � r + l � 1)

(l, r + 1, r + 1), T += (sr+1 � sl) · (N � r + l � 1)

(l, r, r) �!
(
(l � 1, l � 1, r), T += (sr � sl�1) · (N � r + l � 1)

(l, r + 1, r + 1), T += Dr · (N � r + l � 1)

As the graph formed by the 2N2 remaining states and their edges is now directed and acyclic,
the minimum T to reach each state can be computed via dynamic programming to reduce the
time complexity per state from O(logN) to O(1).

Time complexity: O(N2)

Subtask 3

Limits: K  20

Since the states (l, l, r) and (l, r, r) in which r < K or K < l cannot be reached from the initial
state (K,K,K), we can prune them away as well to leave only the states with l  K  r.
There will remain 2K(N �K) = O(KN) such states, each evaluated in a time complexity of
O(1).

Time complexity: O(KN)

NOI 2021 National Olympiad in Informatics—Singapore 14

Subtask 4

Limits: Di = 1

Replacing the total cost T , let us introduce a cost heuristic C which is equal to the sum of algal
strands eaten and current minimum algal strands to be eaten for each point:

C =
NX

n=1

(
time n was first visited, if n has been visited
time elapsed since start of swim + |sn � si|, if n has not been visited

where i is our current vertex.

Similarly, C starts equal to
PN

n=1 |sn � sK |, is nondecreasing as we travel the pond, and ends
equal to the total number of algal strands eaten. The key difference is that swimming a distance
D leftwards with ur unvisited vertices on the right now increases C by 2D ·ur, while swimming
D rightwards with ul unvisited leftside vertices increases C by 2D · ul.

In Subtask 2, we observed that any optimal route has to fit the form

K �! l1 �! r1 �! l2 �! r2 �! ... �! lx �! rx �! 1 �! N

where 1 < lx < ... < l1  K < r1 < ... < rx  N .

For this subtask, we seek to prove that the route K �! 1 �! N is the optimal route which
satisfies the above condition.

Firstly, take any one optimal route K �! l1 �! r1 �! l2 �! ... �! rx �! 1 �! N . Its
cost heuristic C increases as such

K
2(K�l1)(N�K)����������! l1

2(r1�l1)(l1�1)����������! r1
2(r1�l2)(N�r1)����������! l2 �! ... �! rx

2(rx�1)(N�rx)����������! 1
0��! N

However, consider also the alternative route K �! r1 �! l2 �! ... �! rx �! 1 �! N ,
with a cost C 0 of

K
2(r1�K)(K�1)����������! r1

2(r1�l2)(N�r1)����������! l2 �! ... �! rx
2(rx�1)(N�rx)����������! 1

0��! N

The movements and cost incurred in both routes are identical past vertex r1. This leaves only
the first two segments of the original optimal route and the first segment of the alternative route
as the difference, of which

C0 = 2(K � l1)(N �K) + 2(r1 � l1)(l1 � 1)

� 2(K � l1)(r1 �K) + 2(r1 �K)(l1 � 1) = 2(r1 �K)(K � 1) = C
0
0

the alternative route has a cost less than or equal to that of the original route, with equality
holding when l1 = K.

NOI 2021 National Olympiad in Informatics—Singapore 15

Thus, we will do no worse to take the alternative route instead of the original optimal route,
omitting the first leftwards segment to l1. Repeating this argument allows us to further delete
the new first rightwards movement to r1 from the alternative route, and then l2 through rx until
only K �! 1 �! N remains.

Time complexity: O(N)

Subtask 5

Limits: K  N, 2000, 8i 6⌘ 0 (mod 100) : Di � Di+1

We say that a route of the form

K �! r1 �! l1 �! r2 �! l2 �! ... �! rx �! lx �! N �! 1

with 1  lx < ... < l1 < K is made out of x + 1 rebounds, where a rebound is a motion
i �! k �! j for i < j  K  k. In an optimal route, we would also implicitly have
K  r1 < ... < rx < N , for which each rebound would invoke an independent increase in C

of 2(sk � sj)(j � 1) + 2(sk � si)(N � k), and specifically the k taken in one rebound would
affect the C incurred by the rebound itself but not the C of any other rebounds.

We call this cost 2(sk � sj)(j � 1) + 2(sk � si)(N � k) the ground cost of i �! k �! j, and
will from here onwards assume it to be the actual cost of the rebound (as any properties we will
be proving about rebounds need only apply to them when they are part of an optimal route).

Suppose for some fixed i and j and any particular k that i �! k + 1 �! j has a lower cost
than i �! k �! j, that is,

2(sk � sj)(j � 1) + 2(sk � si)(N � k)

> 2(Dk + sk � sj)(j � 1) + 2(Dk + sk � si)(N � k � 1)

= 2Dk(N � k + j � 2)� 2(sk � si) + 2(sk � sj)(j � 1) + 2(sk � si)(N � k)

and equivalently 2Dk(N � k + j � 2)� 2(sk � si) < 0. Then, if Dk � Dk+1 we would get

2Dk+1 (N � (k + 1) + sj � 2)� 2(sk+1 � si) < 2Dk+1(N � k + sj � 2)� 2(sk � si) < 0

implying in turn that i �! k + 2 �! j must have a lower cost than i �! k + 1 �!
j. Therefore, an optimal route can be constructed without its rebounds using any k vertex
surrounded by Dk � Dk+1, as k can always be replaced by at least one of k�1 or k+1 without
increasing C.

We can solve this subtask by following the dynamic programming solution of Subtask 3 and
pruning away all states (l, l, r) and (l, r, r) with Dr � Dr+1.

Time complexity: O
�
K

N
100

�

NOI 2021 National Olympiad in Informatics—Singapore 16

Subtask 6

Limits: K  2000

Let Ci be the minimum cost to reach each vertex i, left of K. This minimum cost can be
constructed using a walk consisting entirely of one or more consecutive rebounds, giving rise
to the recurrence

Ci = min (Cj + 2(j � 1)(sk � sj) + 2(N � k)(sk � si)), 8i < j  K  k

Naively, this formula takes the shape of an O(N3) DP. We can rearrange the right-hand-side of
the recurrence to obtain

Cj + 2(j � 1)(sk � sj) + 2(N � k)(sk � si)

= �2(N � k)si + 2(N � k)sk + Cj � 2(j � 1)sj + 2(j � 1)sk

with 1 term linear in si and 3 terms independent of i. This allows us to apply the convex hull
optimization to this DP, with each (j, k) pair represented by one line over si. An O(KN logN)
as-is implementation of this convex hull implies iterating over every i from K to 1, while in-
serting N � K + 1 lines after each i is evaluated. The convex hull would have the following
general properties:

• Lines have nonpositive gradients which become more negative (decreasing k) as we go
from left to right (in the direction of increasing si).

• At most 1 line from each k vertex will be present at any point in time, since all lines by a
k node have the same gradient.

• Queries to the convex hull will occur with decreasing si (from right to left).

Since we cannot afford to directly compute all lines of such a convex hull, we will instead seek
to maintain a lazy representation of it based on special properties of its lines. Revisiting the
three terms independent of i,

• 2(N � k)sk is tied solely to its vertex k and does not change as j decreases.

• Cj � 2(j � 1)sj is dependent solely on its iteration j and does not vary across all vertices
k of its iteration.

• 2(j � 1)sk decreases as the iteration j decreases; with lines from higher k vertices (lines
further left in the convex hull) experiencing a strictly greater decrease than lines from
lower k vertices.

NOI 2021 National Olympiad in Informatics—Singapore 17

Of particular note is the third term 2(j � 1)sk, which affects how the relative positioning be-
tween the N �K + 1 lines changes from iteration to iteration. It is this term which determines
how lines become critical (uniquely minimal in the convex hull for at least one si 2 R) or
redundant (not uniquely minimal) among the N �K + 1 lines over successive iterations of j.

As 2(j � 1)sk shifts every vertex k’s lines downwards by the same proportion 2sk whenever the
iteration j decreases, any three lines k = a, k = b, and k = c with c < b < a (line a on the left,
line b in between and line c on the right) would have line b be critical w.r.t. a and c for exactly
either an upper-bounded range j 2 (�1, z) or a lower-bounded range j 2 (z,1).

Therefore, every vertex’s lines would be critical in a (possibly empty) range of j 2 (z1, z2),
which we will precompute by finding the upper bounds and lower bounds separately. For upper
bounds, we start with a list of upper bounds of every line k w.r.t its neighbours k� 1 and k+1,
and repeatedly record and delete the line with the lowest upper bound, replacing the bounds of
its neigbours with those w.r.t. their own new neighbours accordingly. Vice versa can be done
for lower bounds, thus determining the critical range of all vertices in O(N logN).

For this subtask, we will visit all j decsending from K to 0, and individually update all i left of
j using the convex hull of j’s iteration. We maintain a segment tree storing the indices of the
critical vertices at j, and for each i binary search down the convex hull to find the optimal line
at si. There are then O(K2) such updates, each taking O(logN) time.

Time complexity: O(K2 logN +N logN)

Subtask 7

We further combine the terms Cj � 2(j � 1)sj and 2(j � 1)sk to observe that each iteration j

interacts with the overall convex hull when added by replacing some or none of the leftmost
lines with its own, causing the overall convex hull to gradually become partitioned from right
to left into ranges of decreasing optimal j.

The indices of these ranges’ j can be stored in a vector, with an iteration j being present at
any point if at least one of its lines is critical in the overall convex hull. The vector can be
maintained whenever a new j is added by either discarding it if it provides no lines better than
those of the latest prior iteration, or inserting it at the end after removing all previous iterations
it makes redundant. This involves a total of O(N) insertions and deletions of iterations, each
taking O(logN) time to confirm or reject.

We can then perform the DP by iterating over i from K to 0. At each i, we determine the
optimal k line and its j iteration via a pointer walk, taking care to skip over redundant lines and
iterations. The pointer walk will hence make a total of O(N) steps of O(logN) time each.

Time complexity: O(N logN)

NOI 2021 National Olympiad in Informatics—Singapore 18

