
Всеукраїнська юнiорська та дiвоча олiмпiади з iнформатики 2024
Кракiв, Польща, 18-22 квiтня 2024

Задача 1A. Набридли довгi умови задач?
Автор: Фейса Богдан

Пiдготували: Фейса Богдан
Розбiр: Фейса Богдан

Блок 1: a1 = a2 = · · · = an;

Якщо a1 = a2 = · · · = an, для кожної перестановки a f(a) дорiвнює 0. Таким чином, вiдповiдь
завжди 0 в цьому блоцi.

Блок 2: n 6 9;

Для n 6 9 ми можемо перебрати всi перестановки a i вручну обчислити f(a) з часовою складнiстю
O(n). Загальна часова складнiсть O(n! · n).

Блок 3: n 6 500;

Для n 6 500 ми можемо побачити, що для кожної фiксованої трiйки i, j, k (i < j < k) оптимально,
щоб цi елементи в a були впорядкованi за зростанням (ai 6 aj 6 ak) або за спаданням (ai > aj > ak).

Доказ:
Припустимо, що ми хочемо мiнiмiзувати

(x− y)2 + (y − z)2

(x− y)2 + (y − z)2 = x2 + y2 − 2xy + y2 + z2 − 2yz

Ми маємо максимiзувати 2xy + 2yz.
Для будь-якого заданого x, y що x+ y = A, максимальне значення xy дорiвнює A2

4
Доказ: Для будь-якого дiйсного q:

A2

4
> (

A

2
− q)(

A

2
+ q) =

A2

4
− q2

Iншими словами, x− y повинно бути мiнiмальним.
Отже, щоб максимiзувати 2xy + 2yz умова (x 6 y 6 z) повинна бути виконана.
У масивi є не бiльше десяти рiзних ai;
Для цього блоку ми повиннi поєднати iдеї попереднiх блокiв. Загальна часова складнiсть для

тесту, в якому є k рiзних значень в a, становить O(k! · k).

Блок 4: n 6 10, 000;

Ми повиннi взяти факт з блоку 3 i перефразувати його:
Не повинно бути локальних максимумiв або мiнiмумiв.
Ми повиннi почати з другого елемента i виконати такi дiї для кожного j (2 6 j 6 n):

• якщо aj−1 > aj ми мiняємо мiсцями елементи на позицiях j i j − 1.

Ми повторюємо цей алгоритм, поки не буде локальних максимумiв i мiнiмумiв. Можна довести,
що найгiрша часова складнiсть цього алгоритму O(n2).

Блок 5: без додаткових обмежень.

Алгоритм з блоку 4 призводить до впорядкованого масиву, тому використовуючи ефективний алго-
ритм сортування, ми можемо досягти часової складностi O(n · log(n)).

Сторiнка 1 з 12



Всеукраїнська юнiорська та дiвоча олiмпiади з iнформатики 2024
Кракiв, Польща, 18-22 квiтня 2024

Задача 1B. Дивнi запити
Автор: Тимкович Олександр

Пiдготували: Тимкович Олександр, Цiцей Павло
Розбiр: Тимкович Олександр

Блок 1: p = [1, 2, . . . , n].

У цьому блоцi можна помiтити, що pki = pi, отже вiдповiддю на кожен запит є max
16i6n

(pi + i).

Блок 2: q 6 10 i 1 6 k 6 100.

У цьому блоцi задумано знайти pki за O(k) для конкретного i. Загальна складнiсть буде O(q · n · k).

Блок 3: 1 6 k 6 100.

У цьому блоцi ми можемо попередньо обчислити pki для кожного 1 6 i 6 n за O(n · k). Потiм
попередньо обчислити вiдповiдь для кожного k i вiдповiдати на запити за O(1).

Блок 4: для кожної пари 1 6 i, j 6 n iснує k, що pki = j.

У цьому блоцi задумано розглядати перестановку як граф. Перестановка утворює єдиний цикл
довжиною n. Отже, ми можемо замiнити k на k mod n i зробити те саме, що i в блоцi 3.

Блок 5: n 6 20.

Тепер ми можемо обробляти кожен цикл незалежно. У кожному циклi ми можемо замiнити k на
k mod `, де ` - це довжина поточного циклу. Потiм, iдея та ж, що i в блоцi 2. Загальна складнiсть
складає O(q · n2).

Блок 6: q 6 104.

Для кожного циклу в перестановцi ми можемо попередньо обчислити максимум для кожного k за
O(n2). Потiм вiдповiдати на кожен запит за O(n).

Блок 7: немає додаткових обмежень.

Спочатку робимо те ж попереднє обчислення, що i в блоцi 6. Також ми можемо групувати цикли з
однаковою довжиною, беручи максимальне значення для кожного k mod `.

Яка верхня межа кiлькостi рiзних довжин циклiв у перестановцi довжини n? Довжина переста-
новки дорiвнює сумi довжин циклiв. Розглянемо суму рiзних довжин циклiв. Припустимо, що цi
довжини є 1, 2, . . . , x. Тодi сума дорiвнює 1 + 2 + · · · + x = x(x+1)

2 . Для x ≈
√
n сума вже бiльша за

n. Це доводить, що iснує не бiльше нiж приблизно
√
n рiзних довжин циклiв.

Отже, ми можемо вiдповiдати на кожен запит за O(
√
n). Загальна складнiсть складає

O(n2 + q
√
n).

Сторiнка 2 з 12



Всеукраїнська юнiорська та дiвоча олiмпiади з iнформатики 2024
Кракiв, Польща, 18-22 квiтня 2024

Задача 1C. I знову ж таки, запити
Автор: Тимкович Олександр

Пiдготували: Тимкович Олександр, Фейса Богдан
Розбiр: Тимкович Олександр

Блок 1: q = 1, l = 1 та r = n.

У цьому блоцi ми маємо знайти вiдповiдь для всього масиву. Жадiбна iдея працює! Ми можемо
спробувати взяти якомога бiльше елементiв у певний сегмент.

Блок 2: k = 1.

Обмеження в цьому блоцi означають, що в кожному сегментi є рiвно один рiзний елемент. Ми можемо
вiдповiдати на запити, використовуючи дерево вiдрiзкiв на заданому масивi. Для кожної вершини
будемо зберiгати вiдповiдь для сегмента, перший та останнiй елементи у сегментi. Для злиття двох
вершин можна порiвняти останнiй елемент лiвого сегмента та перший елемент правого сегмента.

Блок 3: l = 1 для всiх запитiв.

Ми можемо використати iдею з блоку 1 i зберегти вiдповiдь для кожного префiкса. Потiм вiдповiдати
на запити за O(1).

Блок 4: ai 6 105, 1 6 n 6 105.

Обчислимо для кожного iндексу 1 6 i 6 n найбiльше j (i 6 j 6 n) таке, що мiж ai, ai+1, . . . , aj є не
бiльше k рiзних елементiв. Назвемо це j як xi. Це можна зробити за O(n log n logA), використовуючи
дерево Фенвiка з бiнарним пошуком.

Тепер вiдповiдь на запит - це кiлькiсть переходiв типу i → xi, починаючи з l i закiнчуючи в r.
Тут можна використовувати технiку бiнарних стрибкiв. upi,k - це позицiя, в якiй ми опинимося пiсля
2k стрибкiв, починаючи з i. Це можна попередньо обчислити за O(n log n). Також легко вiдповiдати
на запити, використовуючи це попереднє обчислення, за O(log n) для кожного запиту.

Загальна складнiсть - O(n log n logA+ q log n).

Блок 5: ai 6 105, 1 6 n 6 105.

У цьому блоцi задумано ту ж саму iдею, що i в блоцi 4, але попереднє обчислення xi можна зробити
за O(n logA), використовуючи два вказiвники або дерево вiдрiзкiв.

Блок 6: ai 6 105, 1 6 n 6 105.

Iдея та ж, що i в блоцi 5. Можна стиснути цiлi числа масиву, щоб отримати попереднє обчислення
за O(n log n).

Сторiнка 3 з 12



Всеукраїнська юнiорська та дiвоча олiмпiади з iнформатики 2024
Кракiв, Польща, 18-22 квiтня 2024

Задача 1D. Проста задача?
Автор: Цiцей Павло

Пiдготував: Цiцей Павло
Розбiр: Цiцей Павло

Визначення:

Позначимо [a, b, c] як кiлькiсть пiдрядкiв непарної довжини з sl = a, sm = b, sr = c. Таким чином,
вiдповiдь - це [0, 0, 0]+[1, 1, 1]. Також позначимо [all] як усi пiдрядки непарної довжини.

Блок 1: В рядку немає нулiв:

Тут усi пiдрядки непарної довжини є хорошими пiдрядками. Таким чином, ми можемо пройтися по
рядку та легко пiдрахувати кiлькiсть таких пiдрядкiв. Розв’язок працює за O(n).

Блок 2: n 6 100:

Ми проходимо усi можливi трiйки l, r, k та перевiряємо, чи k = l+r
2 , його довжина непарна, l < r та

sl = sr = sk. Розв’язок працює за O(n3).

Блок 3: n 6 103:

Розширимо розв’язок для другого блоку. Якщо ми фiксуємо лише l, r та k = l+r
2 . Тодi ми просто

перевiряємо, чи пiдрядок має непарну довжину, l < r та sl = sr = sk. Розв’язок працює за O(n2).

Блок 4: Рядок мiстить не бiльше 103 одиниць:

Вiдповiдь - це [0, 0, 0] + [1, 1, 1] = [all] − [1, 0, 0] − [0, 1, 0] − [0, 0, 1] − [1, 0, 1] − [1, 1, 0] − [0, 1, 1]. Ми
можемо легко знайти [all] (перший блок). Давайте фiксуємо лише одну ”1” та знайдемо кiлькiсть
пiдрядкiв з цим. Це буде [1, 0, 0]+ [0, 1, 0]+ [0, 0, 1]+ 2 · [1, 0, 1]+ 2 · [1, 1, 0]+ 2 · [0, 1, 1]+ 3 · [1, 1, 1]. Ми
можемо знайти [1, 0, 1], [1, 1, 0], [0, 1, 1], [1, 1, 1] за O(n2) просто фiксуючи двi ”1”. Таким чином, ми
можемо звести рiвняння до [1, 0, 0] + [0, 1, 0] + [0, 0, 1] + [1, 0, 1] + [1, 1, 0] + [0, 1, 1] та вiдняти вiд [all]
та отримати вiдповiдь. Загальна складнiсть O(n2).

Блок 5: Без додаткових обмежень:

Ми можемо фiксувати деякi два елементи та знайти кiлькiсть пiдрядкiв з цим в O(n). Але ми
не можемо вказати третiй елемент. Таким чином, якщо ми записуємо деякi можливi варiанти, ми
можемо отримати такi змiннi:

[1, 0, 1] + [1, 1, 1] (фiксуємо лiвий та правий елемент на ”1”)
[0, 1, 1] + [1, 1, 1] (фiксуємо середнiй та правий елемент на ”1”)
[1, 1, 0] + [1, 1, 1] (фiксуємо лiвий та середнiй елемент на ”1”)
[0, 0, 0] + [1, 0, 0] (фiксуємо середнiй та правий елемент на ”0”)
[0, 0, 0] + [0, 1, 0] (фiксуємо лiвий та правий елемент на ”0”)
[0, 0, 0] + [0, 0, 1] (фiксуємо лiвий та середнiй елемент на ”0”).
Легко бачити, що сума всiх це [all] + 2 ∗ ([0, 0, 0] + [1, 1, 1]). Таким чином, ми просто вiднiмаємо

[all], дiлимо на 2 та отримуємо вiдповiдь. Розв’язок працює за O(n).

Сторiнка 4 з 12



Всеукраїнська юнiорська та дiвоча олiмпiади з iнформатики 2024
Кракiв, Польща, 18-22 квiтня 2024

Задача 2A. Трiшки пригод нiкому не завадить
Автор: Тимкович Олександр

Пiдготував: Тимкович Олександр
Розбiр: Тимкович Олександр

Формально, умова говорить, що вечiрка погана, коли на вiдрiзку iснує елемент, який є пiдмас-
кою будь-якого iншого елемента на вiдрiзку. Щоб перевiрити, чи є число x пiдмаскою y, можна
перевiрити, чи x OR y = y, де OR - це побiтова операцiя.

Блок 1: n 6 40.

У цьому блоцi ми можемо спробувати перевiрити кожен вiдрiзок. На кожному вiдрiзку ми намагає-
мось знайти погану особу. Складнiсть становить O(n4).

Блок 2: n 6 100.

Звернiть увагу, що погана особа завжди має мiнiмальне значення, оскiльки вона повинна бути пiд-
маскою всiх iнших елементiв. Тому ми можемо вiдстежувати можливу погану особу. Складнiсть
становить O(n3).

Блок 3: ai ∈ {0, 1}.
Звернiть увагу, що тут на кожному вiдрiзку iснує погана особа.

Блок 4: без додаткових обмежень.

Ми знаємо, що погана особа, можливо, є мiнiмумом на вiдрiзку. Також ми знаємо, що вона повинна
бути пiдмаскою всiх iнших елементiв на вiдрiзку. Спостереження полягає в тому, що мiнiмум повинен
дорiвнювати побiтовому AND всiх елементiв на вiдрiзку.

Тому ми можемо вiдстежувати мiнiмум i побiтовий AND для кожного вiдрiзка. Складнiсть ста-
новить O(n2).

Сторiнка 5 з 12



Всеукраїнська юнiорська та дiвоча олiмпiади з iнформатики 2024
Кракiв, Польща, 18-22 квiтня 2024

Задача 2B. Трiшки обману нiколи не зашкодить
Автор: Цiцей Павло

Пiдготовав: Цiцей Павло
Розбiр: Цiцей Павло

Блок 1: k = 0:

Ми не можемо виконати жодну операцiю, тому нам потрiбно знайти максимальну суму пiдмасиву.
Ми можемо знайти його, використовуючи префiксну суму. Задача зводиться до пошуку i, j таких,
що j < i та ai−aj є максимальним. Якщо ми фiксуємо i, то j - це елемент, для якого aj є мiнiмальним
на префiксi вiд 0 до i. Це можна зробити за допомогою структури "set"в STL або звичайної черги.
Рiшення працює за O(n · log(n)).

Блок 2: k = 1:

Тут ми можемо виконати лише одну операцiю. Тому ми знаходимо найлiвiший максимальний пiдма-
сив i виконуємо операцiю на найправiший елемент. Це найкращий елемент, оскiльки вiн розглядає
всi елементи, якi перетинаються з цим максимальним пiдмасивом, тому якщо всi пiдмасиви перети-
наються, то вiдповiдь буде зменшена на 1. Рiшення працює за O(n · log(n)), оскiльки використовує
два рази алгоритм з першого блоку.

Блок 3: pi > 0:

Тут максимальна сума пiдмасиву - це весь масив, тому ми просто виконуємо всi операцiї на додатнiх
цiлих числах, поки вони iснують. Якщо їх бiльше, то ми бачимо, що максимальний пiдмасив - це
деякий елемент, оскiльки pi 6 0. Тому нам просто потрiбно мiнiмiзувати максимальний елемент, що
ми можемо зробити, зменшуючи кожен елемент на 1. Таким чином, вiдповiдь буде n

k , де k - залишена
кiлькiсть операцiй. Рiшення працює за O(n).

Блок 4: n 6 1 000:

Тут ми будемо припускати, що ми не знаємо, як знайти максимальну суму пiдмасиву за O(n·log(n)),
але за O(n2) просто перебираючи всi пiдмасиви. Ми можемо використовувати бiнарний пошук для
вiдповiдi. Якщо ми можемо отримати максимальну суму пiдмасиву менше або рiвну x, то очевидно,
що ми можемо отримати її менше або рiвну y, коли x < y. Також, якщо ми не можемо отримати
максимальну суму пiдмасиву менше або рiвну x, то ми не зможемо отримати її менше або рiвну y
для y < x. Тому ця функцiя є монотонною, i нам потрiбно знайти таке x, що ми можемо зробити
максимальну суму пiдмасиву менше або рiвну x, але ми не можемо зробити це для x − 1. Давайте
фiксуємо деяке m та намагаємося зробити всi суми пiдмасивiв менше або рiвнi m. Для цього ми
перебираємо i вiд лiвого до правого та знаходимо максимальну суму пiдмасиву для його елемента, i
якщо вiн бiльший за m, то ми зменшуємо елемент i до такого значення, щоб цей вiдрiзок мав суму
менше або рiвну m. Ми рахуємо кiлькiсть операцiй, якi ми повиннi виконати, i якщо вона бiльша за
k, то очевидно, що вiдповiдь бiльша, iнакше менша. Цей алгоритм працює з тим самим доведенням,
як i в другому блоцi. Рiшення працює за O(n2 · log(n)).

Блок 5: n 6 105:

Якщо ми використаємо рiшення з блоку 4 та використаємо алгоритм для знаходження максимальної
суми пiдмасиву з першого блоку, ми отримаємо рiшення, яке працює за O(n · log2(n)).

Сторiнка 6 з 12



Всеукраїнська юнiорська та дiвоча олiмпiади з iнформатики 2024
Кракiв, Польща, 18-22 квiтня 2024

Блок 6: без додаткових обмежень:

Тут нам потрiбно оптимiзувати рiшення. Давайте оптимiзувати знаходження максимального пiдма-
сиву. Як ми сказали, нам потрiбно знайти мiнiмальний елемент на префiксi [1, i] для всiх i. Це можна
зробити за лiнiйний час, використовуючи той самий алгоритм, що й префiксна сума, але зберiгати
мiнiмум а не суму. Цей алгоритм працюватиме за O(n), тому рiшення працює за O(n · log(n)).

Сторiнка 7 з 12



Всеукраїнська юнiорська та дiвоча олiмпiади з iнформатики 2024
Кракiв, Польща, 18-22 квiтня 2024

Задача 2C. Трiшки знань з криптографiї нiкому не зава-
дить

Автор: Фейса Богдан
Пiдготували: Фейса Богдан

Розбiр: Фейса Богдан

• Спостереження 1.

Загальна кiлькiсть пiрамiдальних перестановок довжини n дорiвнює 2n−1.

Доказ:

Припустимо, що ви починаєте з послiдовностi з n нулiв. На кожному кроцi i ви будете додавати
число i в якусь позицiю. Завжди iснує лише 2 можливих позицiї для числа i, коли всi меншi
числа вже розташованi десь у послiдовностi.

Доказ:

Якщо пiсля розмiщення i в послiдовностi обидва сусiднi елементи все ще нулi, позицiя i стає
локальним мiнiмумом. (I за визначенням це вже не пiрамiдальна перестановка, оскiльки є
щонайменше 2 локальнi максимуми. (перефразувавши визначення, має бути не бiльше одного
максимуму.))

Лише останнiй елемент n має лише одне можливе розмiщення.

Таким чином, є 2 · 2 · · · · · 2 · 2︸ ︷︷ ︸
n-1 разiв

·1 = 2n−1 можливих перестановок.

• Спостереження 2:

Кожна з 2n−1 перестановок може бути представлена за допомогою бiтової маски довжиною
n− 1.

Доказ:

Зi спостереження 1 ми знаємо, що для кожного елемента, що менший за n, iснує рiвно 2 можливi
позицiї. Пiсля створення перестановки ми робимо наступне:

Встановлюємо всi бiти в бiтовiй масцi на 1.

– для кожного числа j, яке розмiщене в позицiї, меншiй за розмiщення числа n, ми вста-
новлюємо j-ий бiт спереду рiвним 0.

Як приклад:

[1, 3, 5, 4, 2]→ [0, 1, 0, 1];

[1, 5, 4, 3, 2]→ [1, 0, 0, 0];

• Спостереження 3:

для кожної перестановки її бiтова маска також дорiвнює кiлькостi пiрамiдальних
перестановок, що строго меншi за неї.

Блок 1: n 6 10:

У цьому блоцi ми можемо перевiрити кожну перестановку i визначити, чи є вона пiрамiдальною.
Пiсля цього ми можемо вручну знайти кiлькiсть тих, що меншi або дорiвнюють p. Часова складнiсть
O(n! · n)

Сторiнка 8 з 12



Всеукраїнська юнiорська та дiвоча олiмпiади з iнформатики 2024
Кракiв, Польща, 18-22 квiтня 2024

Блок 2: n 6 30:

Ми можемо використовувати бiнарний пошук, щоб знайти лексикографiчно найбiльшу перестановку,
меншу або рiвну данiй. Ми будемо використовувати спостереження 1, 2, 3 для цього.

Блок 3: n 6 60:

Ми будемо використовувати iдею з блоку 2, але з трохи бiльшими обмеженнями та виводом за
модулем.

Блок 4: n 6 500:

Ми вручну побудуємо перестановку, що менша або дорiвнює p, пiсля цього перетворимо її в бiнарний
рядок i, нарештi, у бажану вiдповiдь. Перестановка будується наступним чином:

Для деякого префiкса довжини k найбiльша пiрамiдальна перестановка лексикографiчно мен-
ша або рiвна p буде дорiвнювати префiксу p. Ми будемо намагатися побудувати перестановку для
кожного k (0 6 k 6 n). Якщо першi k елементiв однаковi, k + 1-й елемент повинен бути меншим
за pk+1. Ми можемо зберiгати числа, якi не були використанi, у множинi. Пiсля цього, починаючи
з k + 2-го елемента, ми вiзьмемо найбiльше, що не було використано, i використаємо його. Якщо
створена перестановка не бiльша за p, ми збережемо її на потiм. Iснує кiлька умов, коли побудова
перестановки з першими k елементами, рiвними використаним у p, неможлива:

• є щонайменше один iндекс j 6 k, що pj < pj−1.

• k + 1 < n i коли ми на позицiї k + 1, немає числа, меншого за pk+1.

• побудована перестановка для фiксованого k лексикографiчно бiльша за p.

Пiсля побудови кожної можливої перестановки ми виберемо лексикографiчно найбiльшу. Ми
використовуємо спостереження 2 i перетворимо її на бiтову маску. Пiсля цього, використовуючи
спостереження 3, ми обчислимо вiдповiдь i виведемо її за бажаним модулем.

Загальна часова складнiсть: O(n2 · log(n)) або O(n2) залежно вiд реалiзацiї.
Загальна використана пам’ять: O(n2) для зберiгання оптимальних перестановок для кожного k.

Блок 5: n 6 104:

Ми будемо використовувати iдею з попереднього блоку. Якщо ми вiзьмемо рiшення O(n2) з попе-
реднього блоку, нам лише потрiбно оптимiзувати пам’ять. Для оптимiзацiї пам’ятi ми не будемо
зберiгати кожну перестановку, лише найбiльшу. Коли створюється нова можлива перестановка, ми
перевiряємо, чи бiльша вона за поточний максимум, якщо так, ми видаляємо попередню i зберiгаємо
нову.

Блок 6: n 6 105:

Остаточне спостереження для оптимiзацiї полягає в тому, що можлива перестановка, створена для
фiксованого k, завжди буде бiльшою, нiж та, що створена для k − 1 (якщо обидвi перестановки
можна створити).

Отже, завдання полягає в тому, щоб знайти максимальне можливе k, для якого можна створити
пiрамiдальну перестановку.

Це можна досягти, вiдстежуючи перший iндекс m p, де:

• якщо i < позицiя числа n i pi < pi−1.

• якщо i > позицiя числа n i pi > pi−1.

Сторiнка 9 з 12



Всеукраїнська юнiорська та дiвоча олiмпiади з iнформатики 2024
Кракiв, Польща, 18-22 квiтня 2024

якщо немає iндексу m, який задовольняє наведенi умови, p є пiрамiдальним, i ми повиннi безпосе-
редньо перейти до спостережень 2 i 3, щоб отримати вiдповiдь.

Якщо бажаний m знайдено, є два можливi випадки:

• m < позицiя числа n. Нам потрiбно знайти найбiльший j 6 m, що pj > pj−1 + 1.

• m > позицiя числа n. Нам потрiбно знайти найбiльший j 6 (позицiя числа n в p), що
pj > pj−1 + 1.

iндекс j, який ми знайшли, буде дорiвнювати k+1, тому ми можемо створити рiшення для фiксова-
ного k за час O(n · log(n)). Базова реалiзацiя полягає у зберiганнi кожного використаного значення
у префiксi в множинi.

Пiсля цього ми беремо побудовану перестановку i, використовуючи спостереження 2, 3, знаходи-
мо вiдповiдь.

Часова складнiсть O(n · log(n)).

Блок 7: без додаткових обмежень:

Останнiй блок вимагає подальшої оптимiзацiї, позбавившись структури set та попередньо обчислив-
ши ступенi числа 2, необхiднi для визначення вiдповiдi.

Часова складнiсть O(n).

Сторiнка 10 з 12



Всеукраїнська юнiорська та дiвоча олiмпiади з iнформатики 2024
Кракiв, Польща, 18-22 квiтня 2024

Задача 2D. Трiшки формальних умов нiкому не завадять
Автор: Цiцей Павло

Пiдготовав: Цiцей Павло
Розбiр: Цiцей Павло

Блок 1: n 6 100:

Нехай елемент ai максимальний на деякому пiдмасивi. Тодi ми можемо переглянути всi пiдмасиви,
де l 6 i 6 r, i пiдрахувати кiлькiсть пiдмасивiв, якi вiдповiдають умовi, та ai там є максимальним.
Рiшення працює за O(n3).

Блок 2: n 6 103:

Фiксуємо лiвий край пiдмасиву та iтеруємося вправо для правого краю. Також, фiксуємо iндекс
максимального елемента на вiдрiзку паралельно. Використовуючи префiксну суму, ми можемо пе-
ревiрити, чи вiдрiзок є добрим за константний час, тому рiшення працює за O(n2).

Блок 3: a1 < a2 < · · · < an:

Розширимо рiшення для першого блоку. Якщо ai є максимальним, то i є правим краєм пiдмаси-
ву, де ai є максимальним, оскiльки ai+1 > ai. Тодi у нас вже є алгоритм O(n2). Нам потрiбно
знайти кiлькiсть (l, r), де al + · · · + ak = ak + · · · + ar є правдою. Ми знаємо, що k = r, тому
al + · · · + ar = ar =⇒ al + · · · + ar−1 = 0. Таким чином, завданням це знайти кiлькiсть пiдмасивiв
з сумою всiх елементiв, рiвною 0, i r < n, що можна легко вирiшити за O(n), використовуючи хеш-
таблицю. Також, нам потрiбно додати n до вiдповiдi, оскiльки al = ar завжди є хорошим пiдмасивом.
Таким чином, рiшення працює за O(n).

Блок 4: iснує i (1 6 i 6 n), таке, що a1 < · · · < ai та ai > · · · > an:

Розширимо рiшення для третього блоку. Таким чином, ми знаємо, як вирiшити завдання для
a1 < · · · < ai (l, r 6 i) i за симетрiєю для ai > · · · > an (l, r > i). Тому ми можемо фiксувати
ai та шукати l < i та r > i. Ми можемо iтеруватися вiд i − 1 до 1 та фiксувати l, запам’ятовуючи
суму вiд l до i (al + · · · + ai). Потiм iтеруємося вiд i + 1 до n, щоб фiксувати r. Потiм ми можемо
легко знайти кiлькiсть l, таких що ai+ · · ·+ar = ai+ · · ·+al. Використовуючи хеш-таблицю, рiшення
працює за O(n).

Блок 5: n 6 105:

Розширимо рiшення для першого блоку. Ми можемо знайти перше бiльше число злiва та справа,
використовуючи стек за O(n). Для елемента i ми маємо li та ri, де li - перший бiльший елемент
злiва, а ri - перший бiльший елемент справа. Якщо i − li 6 ri − i, то ми можемо iтеруватися вiд i
до li та фiксувати l (симетрично для r), i ми матимемо суму al + · · ·+ ai. Тому нам потрiбно знайти
кiлькiсть r таких, що i 6 r < ri та ai+ · · ·+ar = al+ · · ·+ai. Нехай b буде префiксною сумою a. Тодi
ai+· · ·+ar = al+· · ·+ai те саме, що й br−bi−1 = bi−bl−1. Нехай h буде хеш-таблицею масивiв. Тодi ми
можемо запам’ятати i в hbi . Використовуючи це, коли ми фiксуємо l, ми знаємо, чому дорiвнює br, i
використовуючи бiнарний пошук знаходимо кiлькiсть таких iндексiв r в дiапазонi [i, ri). Насправдi,
це рiшення працює за O(n · log2(n)), оскiльки бiнарний пошук в хеш-таблицi працює за log(n), а
перебiр працює принаймнi за n · log(n).

Доведення:
Ми використовуватимемо математичну iндукцiю за кiлькiстю елементiв. Для n = 1 або n = 0

вiдповiдь робоча за принаймнi n · log(n). Розглянемо n > 1. Нехай k буде iндексом максимального

Сторiнка 11 з 12



Всеукраїнська юнiорська та дiвоча олiмпiади з iнформатики 2024
Кракiв, Польща, 18-22 квiтня 2024

елемента в масивi. За iндукцiєю, вiдповiдь у пiдмасивi [1, k − 1] є принаймнi (k − 1) · log(k − 1),
а для [k + 1, n] є принаймнi (n − k − 1) · log(n − k − 1). Також, min(k − 1, n − k) 6 n

2 , тому
рiшення працює за (k − 1) · log(k − 1) + (n − k − 1) · log(n − k − 1) + n

2 . Це сума однiєї зроста-
ючої та однiєї спадної функцiї, тому максимальне значення досягається, коли k = n

2 , i ми от-
римуємо (k − 1) · log(k − 1) + (n − k − 1) · log(n − k − 1) + n

2 6 n
2 · log(

n
2 ) + n

2 · log(
n
2 ) + n

2

= n · (log(n2 ) +
1
2) = n · (log(n2 ) + log(

√
2)) 6 n · log(n).

Блок 6: масив складається з випадкових цiлих чисел (−109 6 ai 6 109):

Тут ми можемо використати метод "роздiляй i володарющоб вирiшити цей блок за n·log(n). Спочат-
ку, нехай k буде iндексом максимального елемента в масивi. Потiм ми можемо iтерувати через праву
сторону та запам’ятати в хеш-таблицi кiлькiсть кожної префiксної суми. Пiсля цього ми можемо iте-
рувати через лiву сторону та використовуючи формулу br = bi + bi−1− bl−1 можемо пiдсумувати всi
вiдповiдi для цього максимуму за O(n). Потiм нам лише потрiбно знайти вiдповiдi для пiдмасивiв
[1, k] та [k, n], що ми можемо зробити рекурсивно. Рiшення працює за O(n · log(n)) на випадкових
тестах.

Доведення:
Коли тести є випадковими, ймовiрнiсть того, що максимум знаходиться на сегментi [l, r] дорiв-

нює r−l+1
n . Тому, якщо ми призначимо l = n

4 та r = 3·n
4 , то ймовiрнiсть дорiвнює 1

2 . Таким чином,
ймовiрнiсть того, що максимум знаходиться близько до центру, дорiвнює 1

2 , що означає, що в серед-
ньому 1 з 2 разiв розмiр сегмента зменшується в 2 рази, тому рiшення зменшується експоненцiйно,
i, отже, має логарифмiчнi стани, тому в середньому працює за O(n · log(n)).

Блок 7: немає додаткових обмежень.:

Тут є 2 рiшення, обидва працюють за O(n · log(n)):
Перший:
Давайте використовувати «роздiляй i володарюй». Маємо вiдрiзок вiд l до r. Нехай m = b l+r

2 c
i ми пiдраховуємо кiлькiсть пiдвiдрiзкiв, якi задовольняють твердження та перетинають точку m.
Припустимо, що максимум знаходиться десь праворуч вiд m. Перебираючи праву частину пiдвiдрiз-
ку, ми можемо однозначно визначити, яке значення має бути максимальним. Якщо ми зараз зна-
ходимося в iндексi r, тодi ми знаємо, що максимум знаходиться десь на пiдвiдрiзку [m, r], тому це
може бути максимальне значення лише там. Нехай k — iндекс максимального елемента. Тепер нам
потрiбно знайти таке число l, що bl−1 = bk− br + bk−1. Крiм того, максимум на вiдрiзку [l, i] повинен
бути меншим за ak. Це можна зробити за допомогою двох вказiвникiв. Ми можемо запам’ятати всi
iндекси на вiдрiзку [l, i] у хеш-таблицi, i хоча максимум на вiдрiзку [l, i] менше нiж ak, ми можемо
запам’ятати bl, а потiм зменшити його. Крiм того, нам потрiбно отримати вiдповiдi з рекурсивних
викликiв лiворуч i праворуч.

Другий:
Ми можемо розширити рiшення для 6 блоку. Воно працює за O(n·log2(n)) через бiнарний пошук,

тому ми позбудемося цього. Отже, нам потрiбно знайти число r у дiапазонi [i, ri) iз фiксованим
значенням. Iншими словами, нам дано щонайбiльше n · log(n) запитiв типу знайти кiлькiсть чисел
x на вiдрiзку [l, r]. Ми можемо використовувати «роздiляй i володарюй» по запитах. Отже, для
фiксованих li, ri ми маємо m = b li+ri

2 c, де кожен запит проходить через m. Ми можемо роздiлити
запит x, [l, r] на запити x, [l,m] i x, [m + 1, r]. Ми виправили m, щоб ми могли просто повторювати
та запам’ятовувати вiдповiдi хеш-таблицi паралельно, щоб отримати рiшення в O(n · log(n)).

Сторiнка 12 з 12


